By god they are right, this might change the future of mathematics!
// 2024‑edition Rustuse std::rc::Rc;
/// Church numeral: given a successor `s: fn(u32) -> u32`,/// returns a function that applies `s` n times.typeChurch = Rc<dynFn(fn(u32) ->u32) -> Rc<dynFn(u32) ->u32>>;
/// 0 ≡ λs.λx.xfnzero() -> Church {
println!("Define 0");
Rc::new(|_s| Rc::new(|x| {
println!(" 0 applied to {}", x);
x
}))
}
/// succ ≡ λn.λs.λx. s (n s x)fnsucc(n: Church) -> Church {
// `label` is printed *before* the closure is created, so the closure// does not capture any non‑'static reference.println!("Build successor");
Rc::new(move |s| {
// `inner` is the predecessor numeral applied to the same successorletinner = n(s);
Rc::new(move |x| {
// first run the predecessorlety = inner(x);
println!(" predecessor applied to {} → {}", x, y);
// then apply the extra successor stepletz = s(y);
println!(" +1 applied to {} → {}", y, z);
z
})
})
}
/// Convert a Church numeral to a Rust integer, printing each step.fnto_int(n: &Church) ->u32 {
letinc: fn(u32) ->u32 = |k| {
println!(" inc({})", k);
k + 1
};
letf = n(inc); // f: Rc<dyn Fn(u32) -> u32>println!(" evaluate numeral starting at 0");
f(0)
}
/// Even ⇔ divisible by 2fnis_even(n: &Church) ->bool { to_int(n) % 2 == 0 }
fnis_odd(n: &Church) ->bool { !is_even(n) }
fnmain() {
// ---- build the numerals step‑by‑step ----letzero = zero(); // 0letone = succ(zero.clone()); // 1 = succ 0lettwo = succ(one.clone()); // 2 = succ 1// ---- show the numeric values (trace) ----println!("\n--- evaluating 0 ---");
println!("0 as integer → {}", to_int(&zero));
println!("\n--- evaluating 1 ---");
println!("1 as integer → {}", to_int(&one));
println!("\n--- evaluating 2 ---");
println!("2 as integer → {}", to_int(&two));
// ---- parity of 2 (the proof) ----println!("\n--- parity of 2 ---");
println!("Is 2 even? {}", is_even(&two)); // trueprintln!("Is 2 odd? {}", is_odd(&two)); // false// Proof: “divisible by 2” ⇔ “even”.// Since `is_odd(&two)` is false, no odd number can satisfy the// divisibility‑by‑2 condition.assert!(!is_odd(&two));
println!("\nTherefore, no odd number is divisible by 2.");
}
By god they are right, this might change the future of mathematics!
// 2024‑edition Rust use std::rc::Rc; /// Church numeral: given a successor `s: fn(u32) -> u32`, /// returns a function that applies `s` n times. type Church = Rc<dyn Fn(fn(u32) -> u32) -> Rc<dyn Fn(u32) -> u32>>; /// 0 ≡ λs.λx.x fn zero() -> Church { println!("Define 0"); Rc::new(|_s| Rc::new(|x| { println!(" 0 applied to {}", x); x })) } /// succ ≡ λn.λs.λx. s (n s x) fn succ(n: Church) -> Church { // `label` is printed *before* the closure is created, so the closure // does not capture any non‑'static reference. println!("Build successor"); Rc::new(move |s| { // `inner` is the predecessor numeral applied to the same successor let inner = n(s); Rc::new(move |x| { // first run the predecessor let y = inner(x); println!(" predecessor applied to {} → {}", x, y); // then apply the extra successor step let z = s(y); println!(" +1 applied to {} → {}", y, z); z }) }) } /// Convert a Church numeral to a Rust integer, printing each step. fn to_int(n: &Church) -> u32 { let inc: fn(u32) -> u32 = |k| { println!(" inc({})", k); k + 1 }; let f = n(inc); // f: Rc<dyn Fn(u32) -> u32> println!(" evaluate numeral starting at 0"); f(0) } /// Even ⇔ divisible by 2 fn is_even(n: &Church) -> bool { to_int(n) % 2 == 0 } fn is_odd(n: &Church) -> bool { !is_even(n) } fn main() { // ---- build the numerals step‑by‑step ---- let zero = zero(); // 0 let one = succ(zero.clone()); // 1 = succ 0 let two = succ(one.clone()); // 2 = succ 1 // ---- show the numeric values (trace) ---- println!("\n--- evaluating 0 ---"); println!("0 as integer → {}", to_int(&zero)); println!("\n--- evaluating 1 ---"); println!("1 as integer → {}", to_int(&one)); println!("\n--- evaluating 2 ---"); println!("2 as integer → {}", to_int(&two)); // ---- parity of 2 (the proof) ---- println!("\n--- parity of 2 ---"); println!("Is 2 even? {}", is_even(&two)); // true println!("Is 2 odd? {}", is_odd(&two)); // false // Proof: “divisible by 2” ⇔ “even”. // Since `is_odd(&two)` is false, no odd number can satisfy the // divisibility‑by‑2 condition. assert!(!is_odd(&two)); println!("\nTherefore, no odd number is divisible by 2."); }How do I patch this in