• Vendul@lemmy.world
    link
    fedilink
    English
    arrow-up
    7
    arrow-down
    2
    ·
    4 hours ago

    It’s kinda good but it completely destroyed the European manufacturing for solar

    • surph_ninja@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      16 minutes ago

      You’re either an astroturfer or useful idiot spreading oil lobby talking points.

      Either you believe the climate science or you don’t. If you do, you know that we don’t have time for industry protectionism.

    • humanspiral@lemmy.ca
      link
      fedilink
      English
      arrow-up
      1
      ·
      25 minutes ago

      When panels were 30c/watt, projects at $1/watt in EU and US happened. 70c/watt was spent on labour, copper, support structures, and grid connection equipment. All of those can be locally produced, with possible exception of last item.

      At 6c/watt, that is over 90% of power projects are local economy boosting instead of 70%. It provides cheaper energy that is useful for industrialization and cost of living benefits too. US tariffs on solar are entirely about protecting oil/gas extortion power instead of a $10B solar production industry that needs fairly expensive support.

      Solar imports does not cause energy dependence. You have power for 30+ years with no reliance on continuous fuel supplies. Shoes and apparel is a $450B industry in US. You need new supplies every year, and it makes much more sense to secure supply in that industry for war on the world purposes.

    • IndustryStandard@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      2 hours ago

      By providing big subsidies to green energy developement. Something the EU could also have done but refused to. And so they lost their entire lead.

    • Allero@lemmy.today
      link
      fedilink
      English
      arrow-up
      3
      arrow-down
      2
      ·
      2 hours ago

      It is good, period.

      Local manufacturing is politically advantageous and may employ some people at the same time, but that’s where benefits end.

      Europe didn’t reject Chinese face masks during COVID-19, and Europe shouldn’t reject Chinese solar during a climate emergency.

      Solve that first, and political struggles later.

      • nexusband@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        edit-2
        1 hour ago

        It’s not only a political struggle. Working conditions are tremendously better in Europe, Environmental Protection as well. Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment - China neither cares nor has any other incentives to actually do this properly, which is exactly why they are so cheap. Theres also the issue of poor quality, that if you’re manufacturing something that can have a significant impact on the environment, it should “count” and not be waste 10 years later.

        Not only that, China’s subsidies are utterly unfair.

        Destroying the environment in one part of the world to “save” a different one due to climate change is just ridiculously stupid and simple minded.

        • humanspiral@lemmy.ca
          link
          fedilink
          English
          arrow-up
          1
          ·
          22 minutes ago

          Manufacturing photovoltaics takes a huge pile of chemicals that need to be handled properly to not cause any harm to the environment

          Source for this? Cadmium is exclusive to 1 US manufacturer.

    • SkunkWorkz@lemmy.world
      link
      fedilink
      English
      arrow-up
      9
      arrow-down
      3
      ·
      edit-2
      3 hours ago

      Yep the EU will be beholden to a dictatorial regime again. Instead of placating Putin for gas it will be Xi for solar panels and batteries.

            • RecluseRamble@lemmy.dbzer0.com
              link
              fedilink
              English
              arrow-up
              1
              ·
              edit-2
              1 minute ago

              I didn’t mean they only last 2 years but battery degradation is a pretty common and known thing.

              By a quick search I didn’t find any claim of storage battery lifetimes outside of 10-15 years, so there doesn’t seem to be a breakthrough in tech I wasn’t aware of. 15 years is hardly the lifetime of a house, so you certainly don’t “buy only once”.

              Solar panels also don’t work indefinitely but their efficiency degradation is more on par with the lifetime of major parts of the building, like the roof itself.

  • jagged_circle@feddit.nl
    link
    fedilink
    English
    arrow-up
    7
    ·
    10 hours ago

    Theyre $1.25 per watt in south America right now (we have an energy crisis due to climate change caused drought)

  • JustEnoughDucks@feddit.nl
    link
    fedilink
    English
    arrow-up
    83
    ·
    edit-2
    19 hours ago

    Here in Belgium there used to be big government subsidies for solar panels 5-10 ago.

    Now the same wattage battery + solar setup without any government subsidies is a good chunk cheaper than that time with the large subsidies.

    Pretty cool and shows the power of government renewables subsidies. A huge percentage of houses in Belgium have solar panels now.(and electricity still costs 0.30€/kWh average because of fossil fuel energy lobbies)

    Now that there is a local industry around it, most renovations and almost all new builds include them.

    • Knock_Knock_Lemmy_In@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      2 hours ago

      electricity still costs 0.30€/kWh average because of fossil fuel energy lobbies.

      This is the price of guaranteed electricity delivered to your doorstep. We can’t get rid of gas fired power stations and kms of electricity grid network yet.

    • Akasazh@feddit.nl
      link
      fedilink
      English
      arrow-up
      7
      ·
      4 hours ago

      As your northern neighbors. We did subsidize it too, but now the privatized energy companies started whining that there wasn’t enough capacity, so now they charge you for creating free energy

    • Echo Dot@feddit.uk
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      1
      ·
      10 hours ago

      I’m fairly sure that all newly built houses in the UK require solar by law.

      • Blackmist@feddit.uk
        link
        fedilink
        English
        arrow-up
        5
        ·
        4 hours ago

        All the new houses around here with no solar would indicate that is not true. They’re not even required to have a south facing roof.

        • humanspiral@lemmy.ca
          link
          fedilink
          English
          arrow-up
          1
          ·
          12 minutes ago

          It is very poorly implemented. “Builder grade” solar panels in a “smallest compliant” configuration with no concern for architecture to benefit from solar takes place. Builders are intentionally putting the shittiest solar to reduce value of the homes they build so that they can complain about the policy.

  • Valmond@lemmy.world
    link
    fedilink
    English
    arrow-up
    19
    arrow-down
    1
    ·
    16 hours ago

    Just have to buy 1100 panels 😋 but then the price is 0.055€/watt …

    I Want one, but only one or a couple, to put on my balcony…

    • frezik@midwest.social
      link
      fedilink
      English
      arrow-up
      2
      ·
      2 hours ago

      Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.

      Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.

      I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.

    • ikidd@lemmy.world
      link
      fedilink
      English
      arrow-up
      14
      ·
      15 hours ago

      These are topcon modules only. Considering a 400W panel will have about 72 modules in it, that’s only about 15 panels worth. Of course, then you have to actually build the panel and connect the modules, put it behind glass inside a frame, then put in a bypass diode and leads for connection. So an actual panel ends up being about 5-10X the cost of the modules per W.

  • wewbull@feddit.uk
    link
    fedilink
    English
    arrow-up
    39
    arrow-down
    9
    ·
    19 hours ago

    $60k per MW or $210M for a nuclear reactors worth (3.5GW). Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land (1.75km² Vs ~40km²) but at 1% of the cost, why are we still talking about nuclear.

    (I’m using the UKs Hinckley Point C power station as reference)

    • pastermil@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      8
      arrow-down
      1
      ·
      11 hours ago

      but at 1% of the cost, why are we still talking about nuclear

      Sure… the reactor will go 24/7 (between maintenance and refuelling down times, and will use less land

      • wewbull@feddit.uk
        link
        fedilink
        English
        arrow-up
        4
        ·
        2 hours ago

        The land thing isn’t anywhere near enough of a concern for me, especially when dual uses of land are quite feasible.

        24/7 is just about over commissioning and having storage. Build 10x as much and store what you generate. At those sorts of levels even an overcast day generates.

    • DogWater@lemmy.world
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      3
      ·
      edit-2
      10 hours ago

      Because grid level power delivery is about FAR more than just raw wattage numbers. Momentum of spinning turbines is extremely important to the grid. The grid relies on generation equipment maintaing an AC frequency of 60 hz or 50hz or whatever a country decides on. Changing loads throughout the day literally add an amount of drag to the entire grid and it can drag the frequency down. The inverse can also happen. If you have fluctuating wind or cloud cover you can bring the whole grid down if you can’t instantly spin up other methods to pick up the slack.

      reliable consistent power delivery is absolutely critical when it comes to running the grid effectively and that is something that solar and wind are bad at

      Ideally we will be able to use those technologies to fill grid level storage (batteries, pumped hydro) to supply 100% of our energy needs in the not too distant future but until then we desperately need large, consistent, clean power generation.

      • mindlesscrollyparrot@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        1
        ·
        42 minutes ago

        You aren’t wrong, but you are assuming that the grid is required. Solar panels can be installed at the point of use, and then the grid doesn’t come into it at all.

    • Benaaasaaas@lemmy.world
      link
      fedilink
      English
      arrow-up
      29
      arrow-down
      15
      ·
      18 hours ago

      Because there are nights there are winters there are cloudy and rainy days, and there are no batteries capable of balancing all of these issues. Also when you account for those batteries the cost is going to shift a bit. So we need to invest in nuclear and renewables and batteries. So we can start getting rid of coal and gas plants.

      • frezik@midwest.social
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        2 hours ago

        The batteries needed are a lot less than you might think. Solar doesn’t work at night and the wind doesn’t always blow, but we have tons of regional weather data about how they overlap. From that, it’s possible to calculate the maximum historical lull where neither are providing enough. You then add enough storage to handle double that time period, and you’re good.

        Getting 95% coverage with this is a very achievable goal. That last 5% takes a lot more effort, but getting to 95% would be a massive reduction in CO2 output.

      • GissaMittJobb@lemmy.ml
        link
        fedilink
        English
        arrow-up
        20
        arrow-down
        1
        ·
        edit-2
        14 hours ago

        Also when you account for those batteries the cost is going to shift a bit.

        You better be bringing units if you’re going to be claiming this.

        Still less than half of the LCOE of nuclear when storage is added: https://www.statista.com/statistics/1475611/global-levelized-cost-of-energy-components-by-technology/

        Given that both solar and storage costs are trending downwards while nuclear is not, this basically kills any argument for nuclear in the future. It’s not viable on its face - renewables + storage is the definitive future.

      • wewbull@feddit.uk
        link
        fedilink
        English
        arrow-up
        14
        arrow-down
        1
        ·
        16 hours ago

        You’re using factors of less than 10 to argue against a factor of 100.

      • Suzune@ani.social
        link
        fedilink
        English
        arrow-up
        26
        arrow-down
        5
        ·
        17 hours ago

        But Germany has no space for nuclear waste. They haven’t been able to bury the last batch for over 30 years. And the one that they buried most recently began to leak radioactivity into ground water.

        And… why give Russia more military target opportunities?

        • elucubra@sopuli.xyz
          link
          fedilink
          English
          arrow-up
          11
          arrow-down
          1
          ·
          16 hours ago

          I’m not a rabid anti-nuclear, but there are somethings that are often left out of the pricing. One is the exorbitant price of storage of spent fuel although I seem to remember that there is some nuclear tech that can use nuclear waste as at least part of it’s fuel (Molten salt? Pebble? maybe an expert can chime in). There is also the human greed factor. Fukushima happened because they built the walls to the highest recorded tsunami in the area, to save on concrete. A lot of civil engineering projects have a 150% overprovision over the worst case calculations. Fukushima? just for the worst case recorded, moronic corporate greed. The human factor tends to be the biggest danger here.

          • Flatfire@lemmy.ca
            link
            fedilink
            English
            arrow-up
            3
            ·
            16 hours ago

            Not an expert, but molten salt reactors are correct. MSRs are especially useful as breeder reactors, since they can actually reinvigorate older, spent fuel using more common isotopes. Thorium in particular is useful here. Waste has also been largely reduced with the better efficiency of modern reactors.

            Currently, Canada’s investing in a number of small modular reactors to improve power generation capacity without the need to establish entire new nuclear zones and helps take some of the stress off the aging CANDU reactors. These in particular take advantage of the spent fuel and thorium rather than the very expensive and hard to find Uranium more typically used. There’s been interest in these elsewhere too, but considering how little waste is produced by modern reactors, and the capacity for re-use, it feels pike a very good way to supplement additional wind and solar energy sources.

              • Lumisal@lemmy.world
                link
                fedilink
                English
                arrow-up
                2
                ·
                edit-2
                4 hours ago

                We don’t have vast swaths of Frozen Tundras. This isn’t Alaska.

                And it’s actually stored south not north.

            • sugar_in_your_tea@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              5
              arrow-down
              1
              ·
              16 hours ago

              Idk, Finland has a much lower population density vs Germany. France is something like 1/2 the population density, but they also have >50 reactors, so surely Germany can find room for a few…

                • wewbull@feddit.uk
                  link
                  fedilink
                  English
                  arrow-up
                  9
                  arrow-down
                  1
                  ·
                  16 hours ago
                  • Finland: 338,145 km² and 5.6 million people
                  • Germany: 357,596 km² and 82 million people

                  Where do you want to put your hazardous waste again?

    • frezik@midwest.social
      link
      fedilink
      English
      arrow-up
      17
      arrow-down
      4
      ·
      edit-2
      18 hours ago

      I think there’s a contingent of people who think nuclear is really, really cool. And it is cool. Splitting atoms to make power is undeniably awesome. That doesn’t make it sensible, though, and they don’t separate those two thoughts in their mind. Their solution is to double down on talking points designed for use against Greenpeace in the 90s rather than absorbing new information that changes the landscape.

      And then there’s a second group that isn’t even trying to argue in good faith. They “support” nuclear knowing it won’t go anywhere because it keeps fossil fuels in place.

      • sugar_in_your_tea@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        9
        arrow-down
        3
        ·
        edit-2
        16 hours ago

        What isn’t sensible about nuclear? For context, I’m coming from the US in an area with lots of empty space (i.e. tons of place to store radioactive waste) and without much in the way of hydro (I’m in Utah, a mountainous, desert climate). We get plenty of sun as well as plenty of snow. Nuclear should provide power at night and throughout the winter, and since ~89% of homes are heated with natural gas, we only need higher electricity production in the summer when it’s hot, which is precisely what solar is great for.

        So here’s my thought process:

        • nuclear for base load demand to cover nighttime power needs, as well as the small percentage of homes using electricity for heat
        • solar for summer spikes in energy usage for cooling
        • batteries for any excess solar/nuclear generation

        If we had a nuclear plant in my area, we could replace our coal plants, as well as some of our natural gas plants. If we go with solar, I don’t think we have great options for electricity storage throughout the winter.

        This is obviously different in the EU, but surely the nordic countries have similar problems as we do here, so why isn’t nuclear more prevalent there?

        • itslilith@lemmy.blahaj.zone
          link
          fedilink
          English
          arrow-up
          12
          arrow-down
          2
          ·
          14 hours ago

          Because it makes no sense, environmentally or economically speaking. Nuclear is, as you said, base load. It can’t adjust for spikes in demand. So if there’s more energy in the grid than needed, it’s gonna be solar and wind that gets turned off to balance the grid. Investments in nuclear thus slow down the adoption of renewables.

          Solar is orders of magnitude cheaper to build, while nuclear is one of the most expensive ways to generate electricity, even discounting the waste storage, which gets delegated the the public.

          Battery technology has been making massive gains in scalability and cost in recent years. What we need is battery arrays to cover nighttime demand and spikes in production or demand, combined with a more adaptive industry that performs energy intensive tasks when it’s abundant. With countries that have large amounts of solar, it is already happening that during peak production, energy cost goes to zero (or even negative, as traded between utilities companies).

          About the heating: gas can not stay the main way to heat homes, it’s yet another fossil fuel. What we need is heat pumps, which can have an efficiency of >300% (1kWh electricity gets turned into 3kWh of heat, by taking ambient heat from outside). Combined with large, well-insulated warm-water reservoirs, you can heat up more water than you need to higher temperature during times of electricity oversupply, and have more than enough to last you the night, without even involving batteries. Warm water is an amazing energy storage medium. Batteries cover electricity demand as well as a backup in case you need uncharacteristically much water. This is a system that’s slowly getting adopted in Europe, and it’s great. Much cheaper, and 100% clean.

          • frezik@midwest.social
            link
            fedilink
            English
            arrow-up
            2
            ·
            2 hours ago

            We also should consider HVDC lines. The longest one right now is in Brazil, and it’s 1300 miles long. With that kind of range, wind in Nebraska can power New York, solar in Arizona can power Chicago, and hydro all around the Mississippi river basin can store it all. We may have enough pumped hydro already that we might not even need batteries, provided we can hook it all up.

          • xthexder@l.sw0.com
            link
            fedilink
            English
            arrow-up
            8
            ·
            edit-2
            13 hours ago

            You bring up heated water as a method of storage, and it reminds me of a neighborhood in Alberta, Canada that uses geothermal + solar heated water storage for 52 homes. They’ve been able to successfully heat the entire neighborhood with only solar over the winter in 2015-2016 and have gotten > 90% solar heating in other years.

            https://en.wikipedia.org/wiki/Drake_Landing_Solar_Community

            There’s a huge number of new storage technologies being developed, and the fact that some even work on a seasonal basis for long term storage is amazing.

            • itslilith@lemmy.blahaj.zone
              link
              fedilink
              English
              arrow-up
              3
              ·
              13 hours ago

              That’s pretty cool! Still seems to have some issues, but as the technology matures, that seems like a promising technology. I didn’t know seasonal warm water storage was a thing

      • Devorlon@lemmy.zip
        link
        fedilink
        English
        arrow-up
        1
        ·
        18 hours ago

        I’m very much in the first camp and need to remind myself whenever I think about arriving due nuclear

    • alcoholicorn@lemmy.ml
      link
      fedilink
      English
      arrow-up
      9
      arrow-down
      4
      ·
      edit-2
      18 hours ago

      A MW of solar averages out to about .2 MWh per hour. A MW of nuclear averages about .9 MWh per hour.

      But even so as the UK does it, nuclear power isn’t worth it. France and China are better examples since they both picked a few designs and mass produced them.

      China’s experience indicates you can mass produce nuclear relatively cheaply and quickly, having built 35 out of 57GW in the last decade, and another 88GW on the way, however it’s not nearly as quick to expand as solar, wind, and fossil fuels.

      • xthexder@l.sw0.com
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        1
        ·
        edit-2
        13 hours ago

        Maybe just use percentages instead of these weird units. 0.2 MHh per hour is just 0.2 MW, or 20%.

        It seems easier to say solar produces an average of 20% of it’s peak capacity.

      • 486@lemmy.world
        link
        fedilink
        English
        arrow-up
        6
        ·
        18 hours ago

        MW/h

        There is MW which is a unit of power and then there is MWh which is a unit of energy, but what is MW/h supposed to mean?

      • MonkderVierte@lemmy.ml
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        edit-2
        18 hours ago

        Nuclear actually around 0.6, because 1/3 is always off for repair and control.

        • alcoholicorn@lemmy.ml
          link
          fedilink
          English
          arrow-up
          3
          arrow-down
          1
          ·
          edit-2
          18 hours ago

          Maybe in the UK where each plant is basically unique instead of having improvements from all the previous iterations. In the US it’s around 93%. I don’t know how to search China or France’s numbers, but I suspect they’re similar or better.

    • Echo Dot@feddit.uk
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      8
      ·
      edit-2
      10 hours ago

      You have to have some base load it can’t be all renewable because renewables just aren’t reliable enough. The only way to get 100% reliability from solar for example would be to build a ring of panels around the equator (type 1 civilization stuff).

      Of all the options for base load, nuclear is the least worst, at least until we can get Fusion online, but you know that’s always 20 years away.

      • wewbull@feddit.uk
        link
        fedilink
        English
        arrow-up
        2
        ·
        2 hours ago

        Storage. It’s all about storage. In exactly the same way that our water is handled. We have reservoirs to handle the times when natural water supply is low.

      • jagged_circle@feddit.nl
        link
        fedilink
        English
        arrow-up
        10
        arrow-down
        4
        ·
        10 hours ago

        That’s why we have hydro. Its a giant battery. We can also make synthetic methane.

        We absolutely can do 100% renewable.

        • Echo Dot@feddit.uk
          link
          fedilink
          English
          arrow-up
          3
          ·
          7 hours ago

          Hydro is great but it’s not clean it requires you to flood vast areas of land, it’s quite damaging to wildlife.

          It is also highly situation dependent, you be quiet exactly the right kind of geography in order to be able to build hydro and then you require that there is no one living in the affected area otherwise it gets very expensive very quickly assuming you’re allowed to do it at all.

  • Venicon@lemmy.world
    link
    fedilink
    English
    arrow-up
    25
    ·
    20 hours ago

    Good news perhaps but I’m sure I won’t see any benefit in Scotland, still thousands to add solar panels.

    • frezik@midwest.social
      link
      fedilink
      English
      arrow-up
      29
      arrow-down
      1
      ·
      20 hours ago

      Scotland has really good wind power, anyway. Between that, nuclear, and a few other renewable sources, you guys are down to 10% fossil fuel energy use. So don’t worry about solar.

    • brsrklf@jlai.lu
      link
      fedilink
      English
      arrow-up
      10
      ·
      20 hours ago

      You know, if you people wanna ditch the Kingdom and join the club, I don’t think it’s too late.

    • Bosht@lemmy.world
      link
      fedilink
      English
      arrow-up
      8
      arrow-down
      1
      ·
      20 hours ago

      Yup. Average here in south US is 25k for a home system without battery backup.

    • BananaTrifleViolin@lemmy.world
      link
      fedilink
      English
      arrow-up
      5
      ·
      edit-2
      19 hours ago

      For electricity generation: Solar across the UK was about 5% in last year, while Wind was about 29% and Nuclear 13.9%, and hydro 1.3% - so 49.2% of electricity generation over the last 12 months was carbon neutral.

      That’s a huge success story - still a long way to go, particularly as that does not include Gas burned in homes, but the UK is moving in the right direction. And Scotland is a huge source of Wind & Hydro power for the whole country.

      So even if the barriers to solar in your home are still high, the grid is getting cleaner and cleaner every year. There are also community projects installing wind generators which you can join/invest in if you do want to try and get a slice of cleaner energy and solar is not realistic.

      Edit: Source on UK electricity generation: https://www.energydashboard.co.uk/historical Good data on UK electricity generation

    • Olap@lemmy.world
      link
      fedilink
      English
      arrow-up
      5
      ·
      20 hours ago

      Installation the trouble. Roofing is expensive. Next time you have to redo the roof: then it’s time

  • Apathy@lemmy.world
    link
    fedilink
    English
    arrow-up
    4
    ·
    15 hours ago

    Assuming these prices are ideal for a solar grid, which EU country(s) would have the highest chance of shifting towards solar; I wonder

  • hendrik@palaver.p3x.de
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    16 hours ago

    Any good store that will sell me a super cheap and good set including inverter here in Germany? I mean they’re on Amazon for 250€, but maybe there is a better shop?

    • AAA@feddit.org
      link
      fedilink
      English
      arrow-up
      1
      ·
      4 hours ago

      Any of the Discounters, really. ALDI, Lidl, Netto, etc have regular offers in their online shops.

      • hendrik@palaver.p3x.de
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        3 hours ago

        Hmm. But with those three, the simple sets (2x400W + power inverter) seem to be ~100€ more expensive than on Amazon. Maybe I have to go with Amazon then. Thanks anyways! I’ll keep an eye on discounted offers.

        • AAA@feddit.org
          link
          fedilink
          English
          arrow-up
          1
          ·
          15 minutes ago

          A hundred euro is quite a difference. Didn’t expect it to be that much, tbh.

          The only consolation is that, with the discounter sets, you will get something that has been tried and tested and everything is according to the relevant technical standards. Should be, anyway.