Just can’t see anything like this happening until there’s not just workable fusion power generation, but portable versions of that technology… which at this rate and given the challenges currently facing humanity, pretty doubtful that will ever occur. The costs of equipment delivery, resupply, material recovery and transport would be literally astronomical. There’s just no way it makes money.
What would we be mining for that could possibly necessitate and justify the costs of transport (equipment and materials) there and back? Almost any resource would be cheaper to mine on Earth, and the only exceptions would still be so rare as to require gigantic energy inputs.
Maybe, but only if a lunar space elevator were built first. That could hypothetically be built with current technology.
Similarly, a terrestrial elevator to orbit would change things, but that requires further technological advancement.
Current propellant based escape technologies would prevent economic feasibility.
“Materials on the Moon’s surface contain helium-3 at concentrations estimated between 1.4 and 15 parts per billion (ppb) in sunlit areas,[1][61][62] and may contain concentrations as much as 50 ppb in permanently shadowed regions.[63] For comparison, helium-3 in the Earth’s atmosphere occurs at 7.2 parts per trillion (ppt).”
Stretching the use of the word copious here… Helium 3 is specifically what I was thinking of when I said “the only exceptions would still be so rare as to require gigantic energy inputs.”… Also, utilizing it would require fusion technology we don’t have yet.
Listen, going to the moon and space travel is neat and all… There’s just no way space mining makes money with current tech.
Just can’t see anything like this happening until there’s not just workable fusion power generation, but portable versions of that technology… which at this rate and given the challenges currently facing humanity, pretty doubtful that will ever occur. The costs of equipment delivery, resupply, material recovery and transport would be literally astronomical. There’s just no way it makes money.
Why fusion ? A portable fission reactor could do the job.
What would we be mining for that could possibly necessitate and justify the costs of transport (equipment and materials) there and back? Almost any resource would be cheaper to mine on Earth, and the only exceptions would still be so rare as to require gigantic energy inputs.
@uphillbothways Couldn’t it be a staging ground, not just for lunar mining, but also asteroid mining?
@BastingChemina
Maybe, but only if a lunar space elevator were built first. That could hypothetically be built with current technology.
Similarly, a terrestrial elevator to orbit would change things, but that requires further technological advancement.
Current propellant based escape technologies would prevent economic feasibility.
Helium-3; copious amounts in the lunar crust - but it’s filtered out by our atmosphere.
https://en.wikipedia.org/wiki/Lunar_resources#Helium-3
“Materials on the Moon’s surface contain helium-3 at concentrations estimated between 1.4 and 15 parts per billion (ppb) in sunlit areas,[1][61][62] and may contain concentrations as much as 50 ppb in permanently shadowed regions.[63] For comparison, helium-3 in the Earth’s atmosphere occurs at 7.2 parts per trillion (ppt).”
Stretching the use of the word copious here… Helium 3 is specifically what I was thinking of when I said “the only exceptions would still be so rare as to require gigantic energy inputs.”… Also, utilizing it would require fusion technology we don’t have yet.
Listen, going to the moon and space travel is neat and all… There’s just no way space mining makes money with current tech.