Probably going to have to move to radio telescopes on the dark side of the moon or something. I mean, I seriously doubt that terrestrial users are going to let frequency go unused.
For some users, maybe we could switch to lasers, which are more-directional – like, a hypothetical Laser Starlink would have one or a handful of lasers on a station that physically track a satellite or satellites. Problem is that that doesn’t work well with clouds – visible light is obstructed by them.
Maybe it’s possible to use masers, but I assume that if it were technically easy and cheap, it would have been done by now.
I mean, the opportunity cost of not being able to use part of the frequency spectrum is also pretty big. And some of the structural elements are there to stand up to terrestrial conditions, like precipitation, wind, and much-stronger gravity. They wouldn’t need those on the Moon.
I think a more-fundamental issue is that it imposes constraints on the direction in which one can be pulling data from. No great fix for that.
EDIT: If this NASA project makes it to deployment, then there will be at least one up there.
If completed, the telescope would have a structural diameter of 1.3 km, and the reflector would be 350m in diameter.[3][4][5] Robotic lift wires and an anchoring system would enable origami deployment of the parabolic reflector.[6]
Both “on the earth” and “on the moon” provide about the viewing angle of the sky (a semi-sphere). Unless we’re tracking an object with multiple of these spaced around the earth to get 24/7 recordings the moon doesn’t seem worse…
Even then, with two of these you could put them opposite eachother just barely into the “dark side” (side facing away from earth) of the moon and get nearly 360 degree coverage. You’d have to not literally be on the boundary/leave an earth sized gap in the coverage, but it would be pretty damn close.
Yeah, that’s a good point. Though I suppose that some satellites will push at the edge of that, and the further one gets from the Earth antipode on the Moon, the more one will run into that.
googles
Looks like some go out beyond the Moon, like TESS:
The tradeoff being done here that makes me really excited for the future of astronomy is that Starlink is funding the development of Starship, which will in turn make space-based telescopy a hugely easier thing to do. So I’d gladly hand off a bit of spectrum pollution here on Earth (which comes with vastly improved global internet access) for Starship’s launch capacity.
So being dependent upon the company that ruins the sky on earth but offers to get your science off planet (if starship will even work as promised in the end) is a good thing?
If Starship doesn’t work as promised then there will be no Starlink constellation in the long run. The two projects are dependent on each other. Starlink V2 satellites are necessary for the long-term profitability of the constellation, and Starlink V2 satellites can only be launched by Starship.
The “dependency” is only a “dependency” in the sense that SpaceX Starship will be insanely cheap to use compared to any existing competitor. Maybe some of those other well-established space launch companies should have been working on making their launchers better too. I’m sure they’ll be scrambling to do so now that they face actual competition.
Maybe, however last time I checked starship still had significant issues that have some chance of not getting resolved and flacon 9 launches are still quite expensive but that may have changed since then
SpaceX is a for-profit company, so you can expect them to price their launches only a little bit lower than their competitors even if the cost of the launch is dramatically lower. That gives them the most profit. If you want the price to go down significantly then you’ll need to find someone else who can start actually reusing their rockets to get their costs into the same ballpark as SpaceX.
What specific significant issues did you hear that Starship had? NASA is confident enough in their chances that the success of the Artemis program was literally dependent on Starship being successful (the human lander is a modified Starship), and the design has changed a lot even since their previous test launch.
I don’t think starship is going to be priced like that. They’ve long been saying it’s going to dramatically reduce cost to orbit for everyone.
Will they make it more expensive than what it would cost them for a starlink v2 launch, sure, but it’s not gonna be priced per kg just below the next cheapest non resuseable rocket either.
Probably going to have to move to radio telescopes on the dark side of the moon or something. I mean, I seriously doubt that terrestrial users are going to let frequency go unused.
For some users, maybe we could switch to lasers, which are more-directional – like, a hypothetical Laser Starlink would have one or a handful of lasers on a station that physically track a satellite or satellites. Problem is that that doesn’t work well with clouds – visible light is obstructed by them.
Maybe it’s possible to use masers, but I assume that if it were technically easy and cheap, it would have been done by now.
Have you seen the size of just an average radio telescope?
https://upload.wikimedia.org/wikipedia/commons/0/00/CSIRO_ScienceImage_4350_CSIROs_Parkes_Radio_Telescope_with_moon_in_the_background.jpg
That’s just one, some are giant arrays of multiple dishes. That’s a lot of launches, or some VERY creative payload origami.
I mean, the opportunity cost of not being able to use part of the frequency spectrum is also pretty big. And some of the structural elements are there to stand up to terrestrial conditions, like precipitation, wind, and much-stronger gravity. They wouldn’t need those on the Moon.
I think a more-fundamental issue is that it imposes constraints on the direction in which one can be pulling data from. No great fix for that.
EDIT: If this NASA project makes it to deployment, then there will be at least one up there.
https://en.wikipedia.org/wiki/Lunar_Crater_Radio_Telescope
Both “on the earth” and “on the moon” provide about the viewing angle of the sky (a semi-sphere). Unless we’re tracking an object with multiple of these spaced around the earth to get 24/7 recordings the moon doesn’t seem worse…
Even then, with two of these you could put them opposite eachother just barely into the “dark side” (side facing away from earth) of the moon and get nearly 360 degree coverage. You’d have to not literally be on the boundary/leave an earth sized gap in the coverage, but it would be pretty damn close.
Yeah, that’s a good point. Though I suppose that some satellites will push at the edge of that, and the further one gets from the Earth antipode on the Moon, the more one will run into that.
googles
Looks like some go out beyond the Moon, like TESS:
https://en.wikipedia.org/wiki/Transiting_Exoplanet_Survey_Satellite
The tradeoff being done here that makes me really excited for the future of astronomy is that Starlink is funding the development of Starship, which will in turn make space-based telescopy a hugely easier thing to do. So I’d gladly hand off a bit of spectrum pollution here on Earth (which comes with vastly improved global internet access) for Starship’s launch capacity.
So being dependent upon the company that ruins the sky on earth but offers to get your science off planet (if starship will even work as promised in the end) is a good thing?
If Starship doesn’t work as promised then there will be no Starlink constellation in the long run. The two projects are dependent on each other. Starlink V2 satellites are necessary for the long-term profitability of the constellation, and Starlink V2 satellites can only be launched by Starship.
The “dependency” is only a “dependency” in the sense that SpaceX Starship will be insanely cheap to use compared to any existing competitor. Maybe some of those other well-established space launch companies should have been working on making their launchers better too. I’m sure they’ll be scrambling to do so now that they face actual competition.
Maybe, however last time I checked starship still had significant issues that have some chance of not getting resolved and flacon 9 launches are still quite expensive but that may have changed since then
SpaceX is a for-profit company, so you can expect them to price their launches only a little bit lower than their competitors even if the cost of the launch is dramatically lower. That gives them the most profit. If you want the price to go down significantly then you’ll need to find someone else who can start actually reusing their rockets to get their costs into the same ballpark as SpaceX.
What specific significant issues did you hear that Starship had? NASA is confident enough in their chances that the success of the Artemis program was literally dependent on Starship being successful (the human lander is a modified Starship), and the design has changed a lot even since their previous test launch.
I don’t think starship is going to be priced like that. They’ve long been saying it’s going to dramatically reduce cost to orbit for everyone.
Will they make it more expensive than what it would cost them for a starlink v2 launch, sure, but it’s not gonna be priced per kg just below the next cheapest non resuseable rocket either.