I assume they all crib from the same training sets, but surely one of the billion dollar companies behind them can make their own?

  • kromem@lemmy.world
    link
    fedilink
    English
    arrow-up
    6
    ·
    1 day ago

    They don’t have the same quirks in some cases, but do in others.

    Part of the shared quirks are due to architecture similarities.

    Like the “oh look they can’t tell how many 'r’s in strawberry” is due to how tokenizers work, and when when the tokenizer is slightly different, with one breaking it up into ‘straw’+‘berry’ and another breaking it into ‘str’+‘aw’+‘berry’ it still leads to counting two tokens containing 'r’s but inability to see the individual letters.

    In other cases, it’s because models that have been released influence other models through presence in updated training sets. Noticing how a lot of comments these days were written by ChatGPT (“it’s not X — it’s Y”)? Well the volume of those comments have an impact on transformers being trained with data that includes them.

    So the state of LLMs is this kind of flux between the idiosyncrasies that each model develops which in turn ends up in a training melting pot and sometimes passes on to new models and other times don’t. Usually it’s related to what’s adaptive to the training filters, but it isn’t always can often what gets picked up can be things piggybacking on what was adaptive (like if o3 was better at passing tests than 4o, maybe gpt-5 picks up other o3 tendencies unrelated to passing tests).

    Though to me the differences are even more interesting than the similarities.